低炭素社会の構築

気候変動による人・生物への影響が世界規模で懸念されています。東海理化グループでは自動車部品を製造する会社として、自動車の使用時、製品の製造・輸送時に排出されるCO₂を低減することは共通の課題と認識しグループ全体で活動を進めています。

▶中長期目標

開発設計		物 流
●製品の軽量化・小型化設計の推進	●低CO2生産技術の開発・導入と日常改善活動に よるCO2低減活動の推進	●輸送効率の向上によるCO2低減活動の推進
	CO₂原単位 2015年度2011年度比 4%低減 ●エネルギー起源以外の温室効果ガスの管理 (SF ₆ 他)	輸送工程のCO₂原単位 2015年度2012年度比 3%低減
<u> </u>		

活動の歩み

今後の展開

- ●次世代エコカー対応製品
- ●エネルギー供給のベストミックス

- ●再生可能エネルギーの利用拡大
- ●軽量化・小型化技術の開発
- ●エネルギーJITの推進
- ●生産工程のエアレス化

現在

- ●シンプル・スリム・コンパクトな省エネ型ライン
- ●生産性向上活動
- ●照明のLED化
- ●からくり改善の推進

過去

- ●環境対応製品基準制定
- ●太陽光発電の導入
- コージェネレーションシステムの導入

■温室効果ガス(5ガス)排出量と原単位の推移

2014年度実績値

3**.**90_{t-co2}/億円

2014年度実績が増えたのは、売上構成の変化によりSF6の排出量が増加したためです。2015年度は、SF6の切替えなどにより排出量を低減していきます。

2014年度の活動報告

開発設計

燃費性能向上のための 軽量化・小型化製品の開発

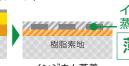
東海理化グループでは、製品の軽量化・小型化を進 め、燃費性能の向上に貢献しています。また、次世代エ コカーへの対応を見据え、製品の形状や材料だけでな く、内部構造や自動車への搭載性も考慮した環境性能 向上のための技術開発を進めています。

リトラクタの小型・軽量化

シートベルト部品であるリトラクタの必要強度を確保したまま、 構成部品を小型化するとともに、フレーム肉抜き形状の最適化 を実施することにより、15%軽量化しました。また、この改善部 品は、グローバル仕様のリトラクタとしてTRQSS(アメリカ)、 TRCW (中国 無錫) にも展開しています。

バイザカバーの軽量化


サイドミラーのバイザカバーの表 面コーティングをクロムめっきから インジウム蒸着+クリア塗装に変更 することにより、金属層を薄膜化、 約9%軽量化しました。



▲バイザカバー

■バイザカバー表面の比較(イメージ)

クロムめっき

インジウム 蒸着(金属) 薄膜化

インジウム蒸着

キーフリーシステム LFアンテナ※の軽量化

内部のフェライトコアを駆動電流の高い小型品に変更し使用 素子を高機能タイプに変更することにより、全体的に小型化 し、従来品から大幅に軽量化しました。

※LFアンテナ:キーフリーシステム搭載車においてエンジン始動する際、室内から携帯キーに 照合用の電波を発信する機能を有する部品のこと。

生産

省エネ活動の継続および専門分科会活動により 2014年度目標を達成

当社では生産工程・事技部門での徹底した省エネ活動 を継続し、中長期目標2015年度2011年度比4%減の 達成をめざしています。2014年度は、従来の省エネ取 組みに加え、新たに省エネ専門分科会を立ち上げ、省エネ 活動を推進し、年度目標48.4t-CO2/億円を達成するこ とができました。

今後は次期中長期取組みプラン達成を視野に入れた省 エネ活動を推進していきます。

照明のLED化拡大

照明のLED化による省エネに取組んでいます。2014年度 は国内工場の他、グループ会社のTRCF・TRCW・TRCT(い ずれも中国)、理嘉工業(台湾)、TRCZ(チェコ)、TRP(フィ リピン)でもLED照明を導入しました。

▲TRCZ(チェコ)のLED照明

エネルギーJITの推進

東海理化グループでは、必要な時に必要なだけエネ ルギーを使用・供給することをめざした「エネルギー JIT (ジャスト・イン・タイム)活動」を進めています。

ターボ冷凍機運用による ガス消費量低減

CO。削減量

本社工場の空調用設備として、高効率のインバータターボ冷凍 機を設置しました。徹底的に省エネにこだわった更新を実現し、 また、経済産業省の補助金制度を活用しています。設備として は、ガス式から電気式の世界最高水準の高効率タイプに変更し、 大幅なCO2低減に貢献しています。

また、運用に関しては、過去の省工 ネノウハウを活かした台数制御仕様 を採用しています。

▲インバータターボ冷凍機

左から 大口工務部 矢野 幸成さん、水田 耕平さん、 濱口 重信さん

半導体工場の吸収式冷凍機の改造 工事では、東海理化初となるシステ ムを採用することで大幅な省エネ効 果を上げることができて、良かったと 思います。また、本社工場の全体空調 (冷凍機含む)管理では、負荷に合わ せた運転を毎日点検しながら、手動 で調整した点が苦労しました。

天井断熱によるガス消費量低減

CO2削減量

半導体工場ではこれまで2階の結露を防ぐために外調機で除 湿した空気を加温して室内へ取り込み、温かくなった室内を内調 機で冷却していました。天井裏を断熱施工することにより2階が 結露することなく冷気を供給できるようになり、外調機の加温と 内調機の冷気が不要となり、ガス使用量が低減できました。

断熱材施工箇所 外調機 冷気 除湿

改善後

排熱回収

オーステンパ炉の電力使用量低減

CO2削減量

製品の乾燥を行っている洗浄乾燥炉内に遮蔽板を設置し、 排ガスを設備内に滞留させる構造に変更しました。これによ り、従来放出していた排ガスの熱エネルギーを再利用すること ができ、電気ヒータの設定温度を下げることができました。

改善前 電気ヒータのみ

遮蔽板

SAF生技部 SAF第2生産部 渡辺 幸一さん 光岡 隆信さん 視し改善につなげていきます。

エネルギーを多く消費する熱処理工 程において、4年前にこの設備を導入 しました。省エネ仕様の効果が上手く 出なかったので、データ解析を行い 今回の改善に着手し、予想以上の効 果を出せました。現状に満足すること なく、継続的に消費エネルギーを監

材料乾燥機の排熱再循環による ガス使用量低減

COa削減量 **3**t-co₂/年

樹脂成形機の材料乾燥機66台について、これまで放出して いた排熱を回収・再循環させることにより、エネルギー使用量 を低減しました。

▲排熱回収・再循環

SEC生技部 平川 靖夫さん

成形機本体と付帯設備の個々電 力消費量をワーキンググループに て調査してきた結果から、除湿材 料乾燥機がターゲットとして明確 になり、今回の改善につなげるこ とができました。今後とも環境を 意識した設備導入計画が定着で きるようにしていきます。

成形機シリンダーへ断熱ジャケット 取り付けによる使用電力量低減

CO2削減量 Ot-co₂/年

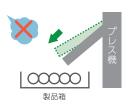
海外拠点であるTRT (タイ) において、日本の省エネ事例を 参考に実施しました。樹脂成形機のシリンダー部の排熱ロスに 注目し、断熱ジャケットを巻付け、放熱口スを低減しました。 これにより、エネルギー使用量を低減しました。

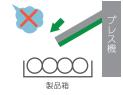
▲断熱ジャケット巻付け後

生産工程のエアレス化

工場で使用されるコンプレッサーの電力使用量は、 工場全体の電力使用量の10~15%を占めておりエア ブローの廃止や電動化など、エアを使用しない工程づく りを進めています。

製品排出時のエアブロー廃止


CO2削減量


プレス機の排出口に製品が滞留し てしまうのを防ぐため、エアブローで 吹き飛ばしていました。

製品が落下する条件を割り出し、 シュート(排出口)の傾斜や接地面の 形状を変更し、自重落下で排出する 方法に切り替えることにより、エアブ ローを廃止しました。

▲プレス機の排出部

接地面積が小さい製品 ▶角度を調整

接地面積が大きい製品 ▶接地面の材料を変更

冷却用エアの使用量低減

この。削減量

亜鉛鋳造機の入子には、金型の開閉にかかわらず、連続的に 冷却用エアを噴射していました。金型締まり時は冷却エアが不 要であることから噴射するタイミングを見直し、金型開き時のみ 冷却用エアを噴射できるよう計8台の設備を改造しました。

高橋 淳志さん、夏目 政明さん 改善活動を継続していきます。

近年では、環境問題が大きく取り上げ られ『環境』の改善も重要な要素となっ ています。みんなの環境に対する意識 も高まり、いろいろな意見、提案が出る ようになりました。今回の改善は、今ま で当たり前のように使用していたエア に着目し、改善することで低減すること ができました。今後も環境を意識した

シンプル・スリム・コンパクトな省エネ型ライン

「シンプル・スリム・コンパクト」のコンセプトに基づ くラインづくりにより、組立ライン・設備などの電力使 用量の低減を進めています。

低負荷ライン統合によるスリム化

CO2削減量 **台**t-co₂/年

メカ式SHL*二次加工ラインのうち、渡り鳥生産を実施して いた2つの低負荷ラインを1ラインに統合することにより、1ラ イン減らすことができました。

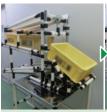
※SHL:Steering Handle Lock。盗難防止のためハンドルをロックする機能を持ち、メカ式と 電動式がある。

改善前

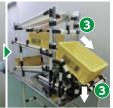
ラインA	ラインB	
3頭式バリ抜き機	プレス	
多軸ボール盤	マシニングC	
バリ抜き機	マシニングB	
多軸ボール盤	マシニングA	
多軸タップ盤	ハンドプレス	
バリ抜き機	洗浄機	
温水洗浄機		

	新ラインB
	タテヨコプレス
•	3頭式バリ抜き機
	バリ抜き機
	マシニングC
	マシニングB
	マシニングA
	ハンドプレス
	洗浄機

改善後


5台廃却

からくり改善


「東海理化らしいモノづくり」を象徴するものとして、 創意と工夫を活かす「からくり改善」による省エネに取 組んでいます。モノづくりの現場から生まれた「お金を かけない」、「創造性に優れた」、「楽しい」作業改善が 「からくり改善」です。

シーソーの原理を用いた部品供給

部品組付ラインにおいて、空箱を排出すると、部品が入っ た箱が自動供給されるからくり機構を使ったシュートを製作 しました。このからくりにはシーソーの原理を応用しており、 類似箇所へ59台導入しています。

- 手前のレバーを上に押し上げる
- 2 空箱が排出され、次の箱が保持される
- ・
 引きを離すと自動的にレバーが戻り、次の箱がセットされる

自然エネルギーの活用

本社の事務棟で使用する電力は、グリーン電 力証書システム*を活用し、バイオマスグリーン 電力を利用しています。

また、本社、豊田工場、音羽工場には合計56 kWの太陽光パネルを設置しており、2014年 度は合計39,182kWhを発電しています。

※グリーン電力証書システムとは、自然エネルギーにより発電された電気の環境付加価値を、証書 発行事業者が第三者機関の認証を得て、「グリーン電力証書」という形で取引する仕組みです。

太陽光パネルの導入拡大

東海理化のグループ会社であるエヌ・エス・ケイ、恵那東海理 化にて、太陽光パネルを新たに設置しました。

現在、東海理化グループでは、計356kWの太陽光パネルを 設置しています。

▲恵那東海理化

▲エヌ・エス・ケイ

▲東海理化サービス(藤前)

▲東海理化サービス(音羽)

コージェネレーションシステムの 活用

CO2削減量 t-co₂/年

コージェネレーションシステムは、一つの熱源より電力と熱を

供給するシステムであり、 電力と排熱の両方を有効 利用することで省エネル ギー・CO2排出量の削減 ができます。また、電力需 要のピーク時に稼働させる ことによって、商用系統の 電力負荷平準化に貢献し ています。

▲本社B-1棟のコージェネレーションシステム

温室効果ガス低減への取組み

WWFジャパン 企業の温暖化対策ランキング

当社では、エネルギー使用にともなうCO2だけでな く、京都議定書に示される温室効果ガス(5ガス)の排出 についても、対象ガスの代替化による削減活動や除外装 置設置による排出抑制の取組みを継続しています。 2014年度は、この取組みが評価され、WWFジャパン* 「企業の温暖化対策ランキング」(輸送用機器部門)にて 第7位にランクインしました。

※公益財団法人世界自然保護基金ジャパン。地球温暖化防止や持続可能社会の形成を活動の 柱としている。

SF₆低減に向けたカバーガス切替

キーシリンダーなどの素材であるマグネシウムの鋳造工程で 使用するカバーガスについて、従来の六フッ化硫黄*1に替え、 フッ化ケトン※2を主成分とするガスを2005年度に国内で初 めて導入し、順次切り替えを進めています。

※1 六フッ化硫黄:化学式 SF6 で表される硫黄の六フッ化物である。地球温暖化係数は、二酸化 炭素の 23,900 倍と大きく京都議定書で削減対象の温室効果ガスの一つ。

※2 フッ化ケトン:地球温暖化係数は二酸化炭素と同程度で防燃効果が得られるガス。

物 流


効果的な物流体制を構築しCO2排出量を低減

当社では、輸送形態やルートの見直しだけでなく、梱包 資材の形状や材質改善により荷量の軽量・小型化にも積 極的に取組んでいます。「ひとつでも多く収納する」こと にこだわり、効率的な物流体制を構築することで製品輸 送時のCO2排出量の低減を進め、2015年度2012年 度比3%低減をめざしています。

荷量ブレ検証による便統合

COa削減量

積載率に余裕を持たせて運行していたスズキKD便・PC 便の積載状況と両納入先への荷量ブレを検証し、統合する ことによって年間2.5t-CO₂を削減できました。

